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The stability of the steady motions of non-holonomic mechanical systems of general form is investigated, on the assumption that 
they have cyclic coordinates and are subject to potential and dissipative forces. A stability theorem, generalizing a theorem proved 
previously in [1], is established. The problem of the stability of the steady motion of a three-wheeled carriage is considered as 
an example. @ 2004 Elsevier Ltd. All rights reserved. 

1. S T E A D Y  M O T I O N S  

Consider a non-holonomic mechanical system whose position is defined by generalized coordinates 
ql . . . .  , qn. The velocities 01, .- . ,  c), are constrained by n - l (l < n) time-independent non-holonomie 
relations 

l 

0x = ~ b z r ( q ) 0 ~  (1.1) 
r = l  

Here and below, the subscripts take the following values: i = 1 . . . .  , k; j  = 1, . . . ,  n;p,  r, s = 1 . . . .  , l; 
o c , ~ , y = k +  1 , . . . , l ; g t = r n  + 1 , . . . , n ; 9 = l +  1, ... , m ; ) 6 = l +  1 , . . . , n .  

We shall assume that the system is subject to potential forces (derivatives of a force function U) and 
dissipative forces (derivatives of a Rayleigh function F). 

The equations of motion of a non-holonomic mechanical system, in the form of Voronets equations, 
have the following form [2, 3] 

n n l 3~ 
d o e  0 ( 0 + U )  Z O(O"l 'U)br-  Z Oi~.~Vxrsgls+~qr=O (1 .2)  
dtO(t, Oq~ )C =/+1 Oq x z z=t+l s=l  

where 

_ Obzr Obxs 
v z r s -  Oqs Oqr 

i f Ob~;s Ob;¢r'~ 

~'--/+1 

Here O, 0 z and • are the results of eliminating the quantities Oz using constraints (1.1) from the 
expressions for T, ~T/Ooz, F, where T is the kinetic energy of the system, 

l l l 

20 = ~ ar,(q)glrgl s > 0, 0 z = ~ Ozp(q)gl p, 2 ~  = ~ frs(qs)qs(tr 
r,s--" 1 p= 1 r,s= 1 

Equations (1.2), together with Eqs (1.1), form a closed system of order n + l in qj, 0r. 
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Let us assume that the following conditions hold [1, 3] 

oq(T+ U) = O, o3_F_F = O, Obx-----~ = 0 (1.3) 
~qu Oqrt ~q~t 

abpr a n aCTP 
a(Oaqa+U) = O, ~ = O, ~--qqax= l~t+ OxpVx's = O, ~ = 0 (1.4) 

Conditions (1.3) mean that the last n - m equations of the non-holonomic constraints (1.1) are 
constraints of the Chaplygin type, and Eqs (1.2) may be considered independently of these constraints 
(the first m - l constraints are constraints of general form). Conditions (1.4) mean that the coordinates 
qa are cyclic in the sense of the definition of [1, 3]; the other coordinates qi, qp are positional. 

Suppose that, under certain initial conditions, the system may have steady motions (SMs) in which 
the positional coordinates and cyclic coordinates are constant 

qi(t) = qio, (1i(t) = O, Cla(t) = (lao = 03a, qp(t) = qpo (1.5) 

A necessary condition for the existence of SM (1.5) is that there must be no dissipation relative to 
the cyclic velocities, that is 

3¢lbgla  = 0 

When that is the case, the m constant quantities qio, 6~, qpo satisfy the m equations 

t n  

~-~ql)o Z lt.aqp O'Jo p=l+ 
ra Oavl I ") n m Oai~ ] 

' ~l(~a~,pj+ ~l+ bPi) + E O~vV~il3- ~t+ bp"t I = 0  + Z 1 [ 2 t  3qi 1 ~ ~ f.O,y¢~O~ 
y , ~ = k +  p =  0 ~ = / + 1  p =  1 

(1.6) 

Z + ~ r l  Oavl3 ~aal~q] 

+ l[ P=aqoJ0 p =  

(1.7) 

l 

Z (bP(z)o(Oa = 0 
o + = k + l  

(1.8) 

The zero subscript means that the expression is evaluated at values of the variables corresponding 
to SM (1.5). 

It was pointed out [1, 3, 4] that in the general case system (1.6)-(1.8) has only trivial solutions for 
0)4 corresponding to equilibrium positions of the system. In some cases ml (ml < m) of Eqs (1.6)-(1.8) 
may turn out to be independent. Then the system may have a family of SMs of type (1.5), of dimension 
m - m l .  

Under conditions similar to those described in [5] 

n n 

(Ouftvl, m,)o = -  ~ (Oi,~Viml~) o, (bpa)o=O (1.9) 
B=rn+l I.t = m +  1 

Eqs (1.7) and (1.8) are satisfied for any remand in the system a manifold of SMs exists, the dimension 
of which is not less than the sum of the number of cyclic coordinates (1 - k) and the number of non- 
holonomic constraints of general form (m - l). 
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In what follows we will assume that conditions (1.9) are satisfied. Then the system has an (m - k)- 
dimensional manifold of SMs, whose parameters (qio, qpo, 0)0) satisfy the system of equations 

m 

t'Oqi/° o = 1 + I k. q9 0 

t k \ -a~l(~aa ~ =t+ --'P 7 m ' ~  ~aaf ~ "] n j]00"la0)13 + Z 1 2 1 ~  + Z I ' ~ - O  boil+ Z Oz~VziI~ : 0 (1.10) 
tl,~=k+l p Z=I+I 

Let us discuss conditions (1.9). These conditions are satisfied, in particular, if 

n 

y~ (O.[~v,a.c) o = O, (bpa)0 = 0 
g=m+l 

(1.11) 

Obviously, a sufficient condition for conditions (1.11) to hold is [1, 3, 4, 6] 

n 

Z Orov~tm' -=0' bpa==.O 
g = m + l  

(1.12) 

Note that conditions (1.12) will hold identically with respect to the positional coordinates, but 
conditions (1.11) hold only for SMs. 

As already noted [5], previous investigations of the stability of SMs of non-holonomic mechanical 
systems [1, 3, 4, 6] have always assumed the truth of conditions (1.12), and these conditions are indeed 
satisfied in well-known problems of the SMs of a heavy rigid body (a disk, torus, etc.) on an absolutely 
rough horizontal plane, and in the problem of the motion of a "roller racer" [6]. In many problems, 
however, including the problem of the stability of the SM of a monocycle [5, 7-9], the conditions 

?z 

Z Orq3v~m t - O  
kt=m+l 

fail to hold, but instead one has 

n 

~" (O~13vg~r) o = 0 
/,t = rn+ I 

In the problem presented below, concerning the SMs of a three-wheeled carriage, which is a non- 
holonomic system with constraints of general form, conditions (1.11) hold but conditions (1.12) do not. 

2. INVESTIGATION OF STABILITY 

We choose a point of the manifold of SMs defined by formulae (1.10) and consider the question of 
whether a solution (1.5) of the system of equations (1.1) and (1.2) is stable to perturbations of the 
variables qi, gti, gl,,, qp. 

We introduce the differences 

xi = q i - q i o ,  Ya = c)a-O)ct, Zp = qp- qpo 

The equations of perturbed motion, when conditions (1.9) are satisfied, in terms of the variables 
x(k x 1) ,y(( l -  k) x 1), z((m - l )  x 1), have the form 

A.f  + C~ = WlX + DlY~ + PlY  + VIZ + X(x ,  Y~, y, z ) 

C~"  + B~ = W2x + D2Y~ + V2Z + Y(x,  Yc, y, z) (2.1) 
= W3x + D3Yc + V3Z + Z(x ,  .~, y, z) 
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The formulae for the elements of the matrices A, C, ... are similar to the corresponding formulae of 
[3]; X, Y and Z are vector functions with terms of order higher than one in the variables just introduced. 

Provided certain conditions are satisfied, the structure of the equations of perturbed motion (2.1) 
can be simplified considerably. For example, if conditions (1.12) are satisfied, the matrices W2, V2, W3 
and V3in Eqs (2.1) are zero matrices, that is, the equations corresponding to the cyclic velocities and 
the equations corresponding to the equations of the non-holonomic constraints do not contain terms 
that are linear in the variables xi, y~ and zp, and these equations obviously admit of m - k  linear integrals, 
to which there correspond m - k zero roots of the characteristic equation of system (2.1) [1, 3]. The 
existence of the (m - k)-dimensional manifold of SMs implies that the linearized system (2.1) has 
m - k zero roots, even when the matrices I412, V2, W3 and V3 do not vanish but satisfy the following 
conditions 

W2WI1pI  = 0, W3~l lp I  = 0, V 2 = W2W-I1V1, V s = W3W~11V1 (detW 1;~0) (2.2) 

We shall show that for non-holonomic systems with constraints of general form one can prove a 
theorem similar to the stability theorem proved in [5] for the SMs of Chaplygin systems. 

It is not difficult to show (see [5]) that if det W1 e 0 the change of variables 

T . 
11 = B o Y + C o x - D 2 1 ) G  ~ = z - W s w l l A ~ - W 3 w l l C y - D 3 1  x (2.3) 

where 

T C T _ W2Wl lA ,  = DZ _ W2W~ID1, = D3 _ WaW-ltD1 B o = B -  W2wllc,  C O = D2~ O31 

and 

detB 0 e 0 

brings system (2.1) to the form 

Ao±" + Dox + Wox + Po11 + Vo~ = Xo(x, £c, 11, ~) 

= ; = 

where 

(2.4) 

(2.5) 

-1 T T 
A o = A - C B  o C O , Do = - D 1 - P o C o + C B o l D 2 1 - V I W 3 W I I A  

WO = - W 1 -  V1D31+ PoD21, Po = -(PI + V1W3WllC)Bo 1, Vo = -VI 

The functions Xo(x, 2, q,  ~), Yo(x, 2, 11, ~), Zo(x, 2, 11, 4) are obtained from the functions X(x,  2, 11, z),  
Y(x, 2, 11, z), Z(x, 2, 11, z) by applying the change of variables (2.3). 

The characteristic equation corresponding to the linearized system (2.5) will obviously always have 
m - k zero roots, while the other roots satisfy the equation 

det(Ao~, 2 + Do~, + W o) = 0 (2.6) 

If some of the roots of Eq. (2.6) have positive real parts, then the SM (1.5) is unstable by Lyapunov's 
theorem of stability in the first approximation. Since under the conditions indicated the number of zero 
roots is identical with the dimension of the manifold of SMs (1.5) (as in the case considered in [1]), it 
follows that if all roots of Eq. (2.6) have negative real parts, we have the singular critical case of several 
zero roots, and the Lyapunov-Malkin theorem holds [10, 11]. 

We thus have a proposition analogous to a theorem of A. V. Karapetyan [1]. 

Theorem. A SM (1.5) of a non-holonomic system (1.1), (1.2) which has a manifold of SMs of dimension 
equal to the sum of the number of cyclic coordinates and the number of non-holonomic constraints of 
general form is stable (unstable) if all the roots of Eq. (2.6) have negative real roots (at least one root 
with positive real part). In the stable case, any perturbed motion sufficiently close to the unperturbed 
motion will tend to one of the possible SMs in the manifold (1.10) as t --+ o o .  

It is important to note that condition (2.4) is essential, as the following example shows. 
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Example. Consider the classical problem of the motion of a Chaplygin sleigh on an inclined plane 
[2, 3]. A heavy rigid body rests on an inclined plane P on three feet, two of which are absolutely smooth, 
while the third is equipped with a semi-circular blade; the centre of mass of the body projects onto a 
point in the plane P on the straight line perpendicular to the blade and passing through the point K at 
which the blade is in contact with the plane P. The generalized coordinates are Cartesian coordinates 
91 and 92 (the 91 axis is parallel to the horizontal plane and the ~2 axis points upward with respect to 
the supporting plane P) of the point K and the angle q~ of rotation of the body about a straight line 
perpendicular to the plane P. A non-holonomic constraint, representing the condition that the body 
will not slip at right angles to the plane of the blade, is described by the equation 

~2 = ~ltgcp (2.7) 

The Lagrangian has the form [2] 

L = 2 [ ( ~  +/0coscp) 2 + (~2 +/(0sing) 2 + b2~21 - mgsintx({ 2 - leosqo) 

where m is the mass, b is the radius of inertia, ~ is the angle of inclination of the plane and l is the 
distance from the projection of the centre of mass on the plane P to the point K. The 91 coordinate is 
cyclic and 92 and q0 are positional coordinates. It is assumed that the system is subject to dissipative 
forces with Rayleigh function F = mh(p2/2. As remarked in [3], Eq. (2.7) does not describe a Chaplygin 
constraint. 

The equations of motion in Voronets form (1.2) are 

l .. lsinq0.1 " 
P20 + C-~S~ 1 + - ' - ' ~ 9  ~ + h~0 + 81sin 9 = 0 

cos oi. , .  _ q~ (2.8) 
1 1 - -  

D ~ 

--Iy--~2 ~1 + °~'3v 91~ + ~Stgqo 0 cosqo q0 + = cos q0 cos qo 

where 
2 p = b2+I  2 , 8 = gsinot 

Equations (2.8), together with the constraint equation (2.7), constitute a closed system in the variables 
{1, ~2 and 9. 

It is not difficult to see that these equations admit of SMs of the form 

q~(t) = q9 o, (qo o = O, rt), ~(t) ----- O, ~1 = D 0, ~2 = ~20 (2.9) 

which belong to a two-dimensional manifold and define uniform linear motion of the body at an arbitrary 
velocity a) 0, with the blade moving parallel to the 9t axis. Note that in that case condition (1.11) is satisfied, 
but not condition (1.12) (boa(q0) = tgq0 ~ 0, boa(% ) = 0). 

Equations (2.8) and (2.7) corresponding to (2.1), linearized in the neighbourhood of the SM (2.9), 
have the form 

p2£+le  3) = -hai-lec3x, le.f + y = -Sx, ~ = VoX (2.10) 

where 

x = qo-q%, y = ~ l - v  o, z = {2-{20, e = cosq% = +1 

In the notation we have adopted, the matrices of the system are 

A = p 2, C = el, B = 1, D 1 = 0, D 2 = -h  1, D 3 = 0  

P1 = P2 = 0, V 1 = V 2 = V 3 --- 0 ,  W 1 = -e6l,  W 2 = -5, W 3 = V 0 

Hence it follows that B 0 = 0 and condition (2.4) does not hold, so that the theorem formulated above 
is not applicable. 
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In the system under consideration, the dimension of the manifold of SMs is two, but the characteristic 
equation of system (2.10) has three zero roots. This system belongs to the usual critical case (in 
Lyapunov's sense) of several zero roots. 

It is not difficult to see that the SM (2.9) (including the equilibrium position) is unstable, irrespective 
of the presence of dissipative forces with respect to the coordinate % Indeed, subtract the second 
equation of system (2.8), multiplied by/cos% from the first. System (2.8) then becomes 

b2~b + hip = 0, ~1 + ~nt~tg9 = hi .  l ~-~q0 cos tp - ~ i  sin2tp 

The corresponding equations of perturbed motion become 

b2jS+ h2 = 0, 29 + T(t)Y = gt(t) 

where 

7 (0  = xtg(~P0 + x) 

h / .  6 
= +x) 2Votg(cPo+X)-~sin2(tPo+X ) lit(t) b2XCOS(CP0 - 

By the first equation of system (2.11) we have 

x(t) = C ,+  C 2 e x p ( - ~ t  ) 

(2.11) 

where C 1 and C 2 are arbitrary constants. 
We now choose the following initial data for system (2.11) 

t = 0: X(0) = X 0 ~ 0 , ~  X(0) = 0,  (C  1 = x0, C 2 = 0) ,  y ( 0 )  = 0 
2' 

Then 

x(t)=x o, Jc(t)-O, 7(0=0, ~( t )=-~s in2xo;  y(t)=- sin2x t - -+~ as t - -+~  

Note that in the case when dissipative forces are acting with respect to all the coordinates ~1, ~2 and 
q0 with Rayleigh function 

m .2 .2 
F = ~[h~02+h1({1 +~2)] 

the SM (2.9) are only equilibrium positions (% = 0), of which, under certain conditions, the equilibrium 
position q0 = 0 is stable and ~0 = 7~ is unstable [2, 3]. 

3. S T E A D Y  M O T I O N S  OF A T H R E E - W H E E L E D  C A R R I A G E  

Let us consider the problem of the SMs of a three-wheeled carriage moving on an absolutely rough 
horizontal plane. Ignoring the inertia of the revolving wheels, we can represent a simplified model of 
the carriage (a tricycle) by a system of two rigid bodies [12]: a body of mass ml, consisting of a body 
and a rigidly attached axis fitted with two wheels, and a body of mass m2, which is a vertical post with 
a front wheel. A special case of this problem (the problem of the motion of a "roller racer") was 
considered in [6]. 

The position of the system is defined by the coordinates x, y, 13 and ~t (see Fig. 1): x and y a r e  the 
coordinates of the point O - the midpoint of the rear bridge in a fixed system of coordinates Oxy, ~ is 
the angle between the axis of symmetry Oxl of the carriage and the fixed axis Ox, A is the projection 
of the point at which the post is mounted on the OXl axis, 0 is the angle defining the position of the 
Ax2 axis of the front part of the tricycle relative to the OXl ards, B is the projection of the centre of the 
front wheel on the xy plane, and C1 and C2 are the projections of the centres of mass of the first and 
second bodies on the OXl andAxl axes, respectively. Let 
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y, 

0 

p ' ~  

\\ ~ X25 
\ " - .  f /xl 

\\\\\\ C2y 

x 

Fig. 1 

b = AB,  l = OA, l 1 = O C l ,  d = A C  2 

(We are ignoring the displacement of the centre of mass of the tricycle due to rotation of the rear part 
through the angle 0.) 

The equations of the non-holonomic constraints, expressing the conditions that the points O and B 
have zero components of the velocity in the transverse direction are 

-~¢singt + ~gcos~ = 0 

- i s i n ( ~  + O) + pcos (g  + O) +/~/cosO + b (~  + O) = 0 
(3.1) 

Without loss of generality, we can assume that simg ¢ 0 and solve Eqs (3.1) fork ,  +: 

lrsinO . ,a3 
= 3)ctg~, ~ = r L s i ~ Y -  o r  j ;  r = b +/cosO (3.2) 

Remark. When the procedure used in [6, 12] to eliminate 2 and)~ from Eq. (3.1) is applied, it is assumed that 
sin0 ¢ 0. This assumption in fact excludes the possibility of investigating the simplest motion of the tricycle - along 
a straight line at constant velocity ~0 (since in that case 0 = 0 or 0 = ~). In addition, the derivation in [12] of the 
equations linearized in the neighbourhood of rectilinear motion involves an error. 

The kinetic energy may be written, assuming the validity of the constraints (3.2), as 

= [(ml + + (I1 + l;)sin20] . 2 + 0 
2r ~ sm lit 

+ [ I l b k + l z l Z c o s k O ] O k - 2 ( I l b - I k l c o s O ) ~ O ¢ }  (3.3) 

2 2 
I l = It~ + mt l  ~ + mzl , 12 = 122- 2mkbd 

where/1 and I2 are the reduced moments of inertia, Ill  is the moment of inertia of the first body about 
a vertical axis passing through the point C1 and/22 is the moment of inertia of the second body about 
a vertical axis passing through the point A. 

The first equation of (3.2) represents a non-holonomic constraint of the Chaplygin type and the second, 
a non-holonomic constraint of the general type. 

It is assumed that the system is subject to dissipative forces which are the derivatives of the Rayleigh 
func t ionf  = h()2/2. 
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We introduce a variable ~ = ~/simg - the projection of the velocity of the point O on to the axis of 
symmetry of the carriage. Then the equations of motion of the system, set up on the basis of the Voronets 
equations, become 

d [ F l ( 0 ) 0  + F2(0 ) l )  ] = RI (0 )02  + R2(0)01) + R3(0)U 2 - h0  

~ t [ F 3 ( 0 ) 0  + F4(0)  1~] + (3.4) S l ( 0 ) 0  2 S2(0)00 

~t = l ( v s i n 0 -  b0) 
r 

where 

Fl(O ) = 1(Ilb2 + 1212c0s20) 
r 

F2(0 ) = F3(0 ) = l ( 1 2 I c o s O - l l b ) s i n O  
g 

/74(0 ) = m 1 + m 2 +  1(11 + 12)sin20 
r 

RI(0 ) = - l ( 1 2 / c o s 0 -  Ilb)blsinO 
r 

R2(0) = - I I ( I 1  + I2)blsin20+ m2dl2rcosO+ b2rM] 

R3(0) = l(bM-m2dl)sinO 
r 

SI(0 ) = 1 [ ( 1 2 / c 0 s 0  - l l b ) ( l  + bcos0)  + (Mb 2 + m2dl2cosO)r] 
Y 

$2(0 ) = 1[(11 + I2)(/+ bcos0)  + (m2dl- Mb)r] sin0 
r 

M = mll  I + m21 

The equations of motion of system (3.4) admit of particular solutions 

0 = 00, 0 = 0, v = v o, ~0 = t~osin00/ro 

describing SMs. 
The parameters 00 and vo satisfy the condition 

vo(bM-mzdl)sinO 0 = 0 or Vo[mlbll+m21(b-d)]sinO0 = 0 

(3.5) 

(3.6) 

(it is assumed that r0 = b +/cos00 * 0). 
Note the fact that condition (3.6) corresponds to the first condition of (1.11), while no condition of 

the form (1.12) is satisfied. 
Condition (3.6) will hold if 
(1) sin00 = 0, v0 is an arbitrary constant; the SM is rectilinear motion at constant velocity ~0 ~ 0 and 

an arbitrary angle ~0 * 0, n to the x axis (~0 = )~0/sing0); 
(2) ~0 = 0; the SM is equilibrium (00 is an arbitrary constant); 
(3) mlbll + mal(b - d) = 0; in that case 00 and ~0 are arbitrary constants (00 ~ 0, n); in particular, 

this condition is satisfied if b = d, l I = 0 or if me = 0, ll = 0 [6]; the SM is rotation of the system about 
its instantaneous centre - the point P (OP = r0/sin00) (see Fig. 1). 
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Thus, a two-dimensional manifold of SMs exists, of dimension equal to the sum of the number of 
cyclic coordinates (y) and the number of non-holonomic constraints of general form, which are 
determined by the second relation of (3.2). 

The equations linearized in the neighbourhood of the SM, in terms of perturbations 

= 0 - 0 o ,  rl = V-Vo, ~ = ~ g - ~ o  

have the form 

where 

A~+C~I  = W I ~ + D , ~ + P , r l ,  C r ~ + B f l  = D2~, ~ = W3~+D3~+P3r l  (3.7) 

= (dR3"] 2 [ { d F 2 ~ l  
a = r , (0o) ,  C = r2(0o), W, \dO)oOO, D 1 = R z ( O o ) - ~ - - ~ ) o J V o - h  

= = = D 0 PI 2R3(00)0 o, B F4(0°)' D2 $2(0°)-  " ~  0 

1 + bcos0 o b sin0o 
W3 = ~ I)0, D3 = - - - ,  P3 - 

r o ro ro 

The characteristic equation of system (3.7) has two zero roots, corresponding to the existence of the 
two-dimensional manifold of SMs; the other roots are determined from the equation 

B(AJL 2 - DI~  - W1) - (C~. - PI)(cT~,  - D2) = 0 

In case 1, (sin00 = 0, e = cos00 = _+1) C = 0, PI = 0, D 2 = 0. Condition (2.4) is satisfied in this 
problem, since B0 = B ~ 0. Under these conditions we haveA0 = A, Do = -D1, W0 = W1 in Eq. (2.6) 
and, according to the theorem proved above, the conditions for the rectilinear motion (3.6) to be stable 
have the form W1 < 0, D1 < 0, that is 

EK 1 < 0, hr 2 + VoK 2 > 0 (3.8) 

where 

K 1 = m l l i b + m 2 1 ( b - d ) ;  K 2 = I 2 2 1 - a I t b + m l b 2 1 1 + m 2 1 ( b 2 - 2 b d + e d l )  

This SM is unstable if either of inequalities (3.8) fails to hold. 
Note that the quantityD1 does not vanish and is a linear function of v0. This means that when there 

are no dissipative forces (h = 0), if the parameters of the system are such that/(2 > 0, the SM is stable 
when v0 > 0, asymptotically stable with respect to part of the variables (0, t)), and unstable when the 
carriage is moving in the opposite direction (% < 0). 

Thus, in this problem, as in the problem of the Celtic stone [3, 4, 13], both distinctive features of 
non-holonomic systems are clearly represented: asymptotic stability of a conservative system with respect 
to part of the variables, and dependence of the nature of the stability on the direction of motion. 

It follows from the first condition of (3.8) that a necessary condition for the stability of rectilinear 
motion is 0 = ~, since as a rule/(1 > 0. This means that the front wheel must be pulled "backwards" 
relative to the direction of motion. 

Note that, if dissipation is present, it follows from the second condition of (3.8) that motion in the 
opposite direction (% < 0) when K2 > 0 may be stable if 0 = 0 (e = 1) at moderate velocities of motion. 

These conclusions regarding the stability of the rectilinear motion of the tricycle agree with the results 
in [14]. 

In case 3 we have K1 = 0. Then R3 --= 0, P1 -- 0, W1 = 0. The condition for stability of the SM is 

L-~30{ (ml + m2)[(12lc°sO0 " I l b ) ( l  + be°s00) + + (11 + + m2dlr ~] 12)m2dlsin200} 
ro 

E + (ml +m2) + h > 0  
r0 A 
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In particular, if h = 0 and m 2 ---- 0, we have 

Vo(lllCOsO0 - l l b ) ( l  + bcosO o) 

b +/cosO o 
> 0  

which agrees with the results in [6]. 
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